欧宝在线登录

教师名录

欧宝在线登录:吕世友

作者:欧宝在线登录发布时间:2020年06月06日 21:22

一、基本信息

吕世友,博士,教授,博士生导师

联系方式:13871209035

电子邮箱:shiyoulu(AT)hubu.edu.cn

研究方向:近年来一直探讨植物油脂(TAG)及表皮蜡质(Wax)、角质(Cutin)和木栓质(Suberin)的生物合成及调控的分子机理,同时解析这些脂肪酸衍生物与环境因子的互作关系及其可能的生物学功能

社会任职:中国林学会经济林分会,常务理事;湖北省植物生理与分子生物学会,常务理事;湖北省林学会,常务理事;BMC Plant Biology,编委;植物科学学报,编委;经济林研究,编委

二、教育背景

2001.09–2004.06  吉林大学(农学部,原解放军军需大学),分子遗传学,博士

1998.09–2001.06  吉林大学(农学部,原解放军农牧大学),遗传育种学,硕士

1994.09–1998.06 吉林大学(农学部,原解放军农牧大学),园艺学,学士

三、工作经历

2019.02至今        欧宝在线登录,教授

2013.06–2019.01  中科院武汉植物园,研究员(中科院人才计划

2010.10–2013.05  沙特阿拉伯国王科技大学植物逆境基因组研究中心,博士后

2007.01–2010.09  美国普渡大学园艺系,博士后

2004.09–2006.10  清华大学生物科学与技术系,在职博士后

2004.07–2006.12  吉林大学农学部植物科学学院,讲师

四、科研项目

1.      国家自然科学基金面上项目:拟南芥β-酮脂酰辅酶A合成酶3KCS3)作为负调节因子参与蜡质合成的分子机制解析,2021.01–2024.12,主持

2.      中国科学院战略生物资源服务网络计划植物种质资源创新平台项目:新兴工业原料植物山桐子新种质创制,2018.06–2020.12,主持

3.      十三五国家重点研发计划:林业资源培育及高效利用技术创新重点专项子课题,油桐副产品高值化加工利用关键技术研究,2017.07–2020.12,主持

4.      国家自然科学基金面上项目:拟南芥miR156调节表皮蜡质合成的功能及机理解析,2016.01–2019.12,主持

5.      中科院海外科教项目:非洲植物天然产物开发与利用研究,2016.01–2020.12,主持

6.      国家自然科学基金面上项目:拟南芥蜡质合成相关基因CER16的功能解析,2014.01–2017.12,主持

7.      中科院知识创新项目:能源植物油桐新种质创制,2016.01–2018.12,主持

8.      中国科学院战略生物资源服务网络计划植物种质资源创新平台项目:新兴工业原料植物山桐子新种质创制,2016.11–2018.06,主持

9.      中科院海外科教基地项目:非洲油脂植物调查、收集与成分分析,2013.01–2015.12,主持

五、#共同第一作者,*通讯作者)

1.      Liu X, Li R, Lu W, Zhou Z, Jiang X, Zhao H, Yang B, Lü S*. (2021) Transcriptome analysis identifies key genes involved in the regulation of epidermal lupeol biosynthesis in Ricinus communis. Industrial Crops and Products 160, 113100.

2.      Zhao H, Kosma DK, Lu? S*. (2021) Functional role of long-chain acyl-CoA synthetases in plant development and stress responses. Frontiers in Plant Science. doi: org/10.3389/fpls.2021.640996

3.      Tang J, Yang X, Xiao C, Li J, Chen Y, Li R, Li S, Lü S, Hu H*. (2020) GDSL lipase occluded stomatal pore 1 is required for wax biosynthesis and stomatal cuticular ledge formation. New Phytologist 228, 1880-1896.

4.      Zhang P, Wang R, Yang X, Ju Q, Li W, Lü S*, Tran LP*, Xu J*. (2020) The R2R3-MYB transcription factor AtMYB49 modulates salt tolerance in Arabidopsis by modulating the cuticle formation and antioxidant defense. Plant Cell and Environment 43, 1925-1943.

5.      Yang X, Feng T, Li S, Zhao H, Zhao S, Ma C, Jenks M, Lü S*. (2020) CER16 inhibits post-transcriptional gene silencing of CER3 to regulate alkane biosynthesis. Plant Physiology 182, 1211-1221.

6.      Li RJ, Li LM, Liu XL, Kim JC, Jenks MA, Lü S*. (2019) Diurnal regulation of plant epidermal wax synthesis through antagonistic roles of the transcription factors SPL9 and DEWAX. The Plant Cell 31, 2711-2733.

7.      Feng T, Yang Y, Busta L, Cahoon EB, Wang H, Lü S*. (2019) FAD2 gene radiation and positive selection contributed to polyacetylene metabolism evolution in Campanulids. Plant Physiology 181, 714-728.

8.      Fan W, Lu J, Pan C, Tan M, Lin Q, Liu W, Li D, Wang L, Hu L, Wang L, Chen C, Wu A, Yu X, Ruan J, Yu J, Hu S, Yan X*, Lü S*, Cui P*. (2019) Sequencing of Chinese castor lines reveals genetic signatures of selection and yield-associated loci. Nature Communications 10, 3418.

9.      Zhang L, Wu P, Lu W, Lü S*. (2018) Molecular mechanism of the extended oil accumulation phase contributing to the high seed oil content for the genotype of tung tree (Vernicia fordii). BMC Plant Biology 18, 248.

10.   Cui P, Lin Q, Fang D, Zhang L, Li R, Cheng J, Gao F, Shockey J, Hu S, Lü S*. (2018) Tung tree (Vernicia fordii, Hemsl.) genome and transcriptome sequencing reveals coordinate upregulation of fatty acid beta-oxidation and triacylglycerol biosynthesis pathways during eleostearic acid accumulation in seeds. Plant and Cell Physiology 59, 1990-2003.

11.   Yang X, Wang Z, Feng T, Li J, Huang L, Yang B, Zhao H, Jenks M, Yang P, Lü S*. (2018) Evolutionarily conserved function of the sacred lotus (Nelumbo nucifera Gaertn.) CER2-LIKE family in very-long-chain fatty acid elongation. Planta 248, 715-727.

12.   Yang X, Zhao H, Kosma D, Tomasi P, Dyer J, Li R, Liu X, Wang Z, Parsons E, Jenks M, Lü S*. (2017). The acyl desaturase CER17 is involved in producing wax unsaturated primary alcohols and cutin monomers. Plant Physiology 173:1109-1124.

13.   Li R, Gao X, Li LM, Liu XL, Wang ZY, Lü S*. (2016) De novo assembly and characterization of the fruit transcriptome of Idesia polycarpa reveals candidate genes for lipid biosynthesis. Frontiers in Plant Science 7, 801.

14.   Zhao H, Zhang H, Cui P, Ding F, Wang G, Li R, Jenks M, Lü S*, Xiong L*. (2014) The putative E3 Ubiquitin Ligase ECERIFERUM9 regulates abscisic acid biosynthesis and response during seed germination and postgermination growth in Arabidopsis, Plant Physiology 165, 1255-1268.

15.   Lü S*, Zhao H, David Des Marais, Parsons E, Wen X, Xu X, Bangarusamy D, Wang G, Roland O, Juenger T, Bressan R, Jenks M. (2012) Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status. Plant Physiology 159, 930-944.

16.   Lü S, Zhao H, Parsons E, Xu C, Kosma D , Xu X, Chao D, Lohrey G, Bangarusamy D, Wang G, Bressan R, Jenks M. (2011) The glossyhead1 (gsd1) allele of ACC1 reveals a principal role for multi-domain ACETYL-COA CARBOXYLASE in the biosynthesis of cuticular waxes by Arabidopsis thaliana. Plant Physiology 157, 1079-1092.

17.   Lü S, Song T, Kosma D, Parson E, Rowland O, Jenks M. (2009) Arabidopsis CER8 encodes a Long-Chain Acyl CoA Synthetase 1 (LACS1) and has overlapping functions with LACS2 in plant wax and cutin synthesis. The Plant Journal 59, 553-564.

18.   Lü S, Gu H, Yuan X, Wang X, Wu A, Qu L, Liu J. (2007) The GUS reporter-aided analysis of the promoter activities of a rice metallothionein gene reveals different regulatory regions responsible for tissue-specific and inducible expression in transgenic Arabidopsis. Transgenic Research 16, 177-191.

19.   Zhao H, Lü S, Li R, Chen T, Zhang H, Cui P, Ding F, Liu P, Wang G, Xia Y, Running M, Xiong L. (2015) The Arabidopsis gene DIG6 encodes a large 60S subunit nuclear export GTPase 1 that is involved in ribosome biogenesis and affects multiple auxin-regulated development processes. Journal of Experimental Botany 66, 6863-6875.

20.   Chao DY, Gable K, Chen M, Baxter I, Dietrich CR, Cahoon EB, Guerinot ML, Lahner B, Lü S, Markham JE, Morrissey J, Han G, Gupta SD, Harmon JM, Jaworski JG, Dunn TM, Salt DE. (2011) Sphingolipids in the root play an important role in regulating the leaf ionome in Arabidopsis thaliana. The Plant Cell 23, 1061-1108.

21.   Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lü S, Joubès J, Jenks MA. (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiology 151, 1918-1929.

欧宝在线登录-欧宝登录入口